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 ON THE AVERAGE DISTANCES IN A CIRCULAR DISC*

 JOHN S. LEWt, JAMES C. FRAUENTHALt AND NATHAN KEYFITZ?

 Abstract. Using the l' notion of distance in the Cartesian plane, and assuming a uniform density of
 locations on a circular disc, we consider the resulting distance to any specified point of this domain, and we
 determine the first two moments of this random variable for p = 1, 2, 00. We find the maxima and minima of
 these average distances and their ratios, hence show their almost exact proportionality over the disc.
 Situations motivating these results include traffic flow on a rectangular street grid in a circular city and
 physical design of certain computer systems in two dimensions.

 1. Introduction. A common model for urban transportation is traffic flow in a
 circular city. Various authors (Smeed [16], Smeed and Jeffcoate [17], Fairthorne [5],
 Tan [18], Einhorn [4], Holroyd [11], Pearce [13]) assume a disc city with either a
 rectangular or a polar street grid, consider travel distances along either grid or
 straight-line paths, obtain double averages over both initial and final points, then
 essay policy conclusions for both real and hypothetical cities. However, the average
 distance from a fixed point has received somewhat less attention in this literature
 (Haight [7], Witzgall [21]). The physical design of a computer generates optimal
 placement problems in two dimensions which involve similar average distances from a
 given point (Hanan and Kurtzberg [10], Karp, McKellar and Wong [12], Wong and
 Chu [22]). Often the appropriate distance for such problems becomes the maximum
 absolute value of the coordinate differences, while uniform distributions on the
 relevant domains yield important results for any further analysis, and circular
 domains, in many cases, provide a close approximation to the optimal shapes.

 Certain recent models of disc cities involve some radial dependence for the
 population density, but cited empirical data on such densities give no clear indication
 of the functional form (Pearce [13]). Moreover, a probability density, in the contexts
 of these models, may represent the spatial distribution of other entities, such as fires,
 workplaces, or accidents. Thus a uniform density offers at least a universal first
 approximation, and the ultimate issues may demand only broad geometrical assertions
 (Plattner [14]). Hence we suppose, for concreteness, that a circular city of given radius
 has a fine rectangular grid of streets; and we require, for simplicity, that the pro-
 bability distribution of the relevant locations is uniform on the disc: we assume, in
 other words, that the probability measure of any Borel set is proportional to its area.
 We choose an arbitrary point in this circular disc, consider its l' distance to a random
 location, and calculate the first two distance moments for p = 1, 2, xo. This yields
 properties of the average distances, and their ratios, which determine maxima and
 minima on the disc. The almost exact proportionality of these averages is a notewor-
 thy consequence of this work.

 We introduce a system (x, y) of rectangular coordinates, and define an associated
 pair (i, j) of unit vectors, with the origin located at the disc center and the axes parallel
 to the street grid. Our unit of length will be the radius of the city, whence the disc city
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 AVERAGE DISTANCES IN A CIRCULAR DISC 585

 will have a representation

 (1.1) D ={(x, Y):X2+y2_ 1}

 and a location in any area dx dy will have a probability of dx dy/ir. From an arbitary
 point (u, v) in these coordinates to a random point (x, y) with uniform distribution, the

 1P distance for l?p<oo is {|u-xI'+Iv-yIP}11/, so that its nth moment, for n=
 19,2,9 ,is

 (1.2) ap(u, v)= J X IJ p x _ + Iv p n/p dx dyl,7
 D

 and the 1l distance, as usual, is max (u -xv, v o), SO that its nth moment, in the
 same way, is

 (1.3) a(u, v)= ||j{max (du -xl, Iv - y )}ndx dy/r.
 D

 The obvious symmetries of (1.2) and (1.3) yield

 (1.4) a'(v, u) = ap (u, v) = a'(IuI1, Iv ) for all p and n.

 For any real number fr we recall the vector function

 (1.5) e(fr)=i cos fr+j sin fr,

 and for our generic points we define the further representations

 (1.6) q = qe(q) = ui+ vj, r = re(9) =xi+ yj.

 We use the polar coordinates for (u, v) to express the rotational average of apn
 27r

 (1.7) b P (q) = (2,i)1 j' a P (q cos X, q sin 4) do.

 If we rotate the point (u, v) onto the positive x-axis, then we do not change the
 average a 2(U, v) in the Euclidean sense, so that

 (1.8) a2(u, v)= a2(q, 0)= b2(q),

 where q2 = u2+ v2. However if p ?2 then a P(u, v) is not rotation-invariant. The
 variance of the lp distance is a P(u, v)- [a P(u, V)]2 by a standard identity. Thus we
 shall investigate the distance moments for n = 1, 2; and we can evaluate the resulting
 integrals for p = 1, 2, xo. However if, for any real s, t, we recall the identity

 (1.9) Is + tj + Is - tj = 2 max (IsI, ltl);

 and if, in definition (1.3), we substitute the variables

 (1. 10) u'= (u + v)/V, v' =(u - v)/i;

 (1.11) x'= (x +y)/s.2, y'= (x -y)/s./;
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 586 JOHN S. LEW, JAMES C. FRAUENTHAL AND NATHAN KEYFITZ

 then directly, by (1.9), we obtain the reduction

 an(u, v)= 2-J' {lu +v -x -yl + u-v -x +yll} dx dy/iT
 D

 (1.12)

 = 2-n/2 fjU {IU_-X,I+ IV_-y'}n dx' dy'/Tr = 2-n/2aa 1(u', v').
 D

 Hence our study of these moments requires no further mention of a' (u, v).
 Moreover, our calculated average for the rectangular distance will yield the

 corresponding result for a nonorthogonal street grid. If e1, e2 are unit vectors parallel

 to the grid directions, then k = (e1 x e2)/|e1 x e2l is a unit vector perpendicular to the
 disc, and e* = e2x k, e* = k x e1 are unit vectors orthogonal respectively to e2, e1.
 Moreover, these vectors satisfy

 el el =e2 e* = le, x e2 1 =sin a,

 where the grid directions define the angle a, and the average distance becomes

 (1.14) J|lelxe2l-l{le* (q-r)l+ le* (q-r)I} d2r/7r=(csc a). al(et q,e* q).
 D

 Fairthorne [5], for example, considers a triangular grid of streets.

 2. Rectangular distance. For 0? t ' 1 we define the function

 (2.1) f(t) = 2t1/2 arcsin t11/2 + 2(2 + t)(1 - t)1/2;

 and by direct calculation we obtain its derivative

 (2.2) '(t) = t-1/2 arcsin t 1/2+ t)1/2

 Moreover t1/2 < arcsin t1/2 for positive t, whence

 (2.3) f"(t) = lt-1(1l- t)1/2 _ lt-3/2 arcsin t1/2 < 0 for O< t < 1.

 Thus f'(t) is strictly decreasing on [0, 1], but is positive by (2.2); whereas f(t) is strictly
 increasing by this remark, and is positive by (2.1). The terms in (2.1) have standard
 expansions about the origin, which yield a corresponding series for f(t):

 oo

 (2.4) f(t) rF(m -3)tm/[(1 - 2m) 312F(m + 1)] = 4F(-3 - 1 ; t).
 m=O

 The symbol F in this relation is a hypergeometric function of t (Abramowitz and
 Stegun [1, eq. (15.1.1)]), so that (2.4) offers an analytic continuation to complex t. The
 coefficient of tm is O(m-7/2) for large m (Abramowitz and Stegun [1, eq. (6.1.47)]), so
 that (2.4) provides an absolutely convergent series for It I 1. Hence f(t), despite its
 definition (2.1), has no singularity at the origin.
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 AVERAGE DISTANCES IN A CIRCULAR DISC 587

 Now we apply relation (1.9) to evaluate an auxiliary integral:

 |J lu -xl dx dy = 2 { (1 -X2)1/2iU -Xi dx
 D

 =4 { (--x2)1/2max(IuI,x)dx

 (2.5) lul (1-x2)1/2uIdx+41 (1 x2)1/2xdx
 -lul

 arcsin lu

 = 41u d | cos * 4[(? - X2)3/21

 =f(u2) for -1 _ u _+1.

 Then definition (1.2) and this integral imply

 lraI(u, v)= {lu -xI+Iv-yI}dxdy
 D

 (2.6) =f(u2)+f(V2) for -1 u, v- +1.

 Next we introduce polar coordinates (r, 9) to evaluate a second integral:

 J fu-x12 dxdy =J|f (2 -2ux+x2)dxdy

 D D

 (2.7)

 . udxdyo+- X{ (+ Y2) dxdy

 D D

 7rU +| d9 r3 dr = +TU - for real u. 2 ~~~~~4

 Also we define Q = Dffirst quadrant to abbreviate our notation, and we invoke
 relation (1.9) to evaluate a third integral:

 i{ u-xI Iv-yIdxdy={I{u-xI+Iu+x }{lv-yI+Iv-y }dxdy
 D 0

 =4 Jj max (Iuj, x)max (jvj, y) dxdy
 0

 (2.8) rlul Ivl lul J-x2
 =(41uu I dxII dy+21u { dx d(y2)

 .11 .1-y2 J-V2 J-X2

 +21v dyU2 d(X2)+U2 (X ) 2 d(y 2)

 2 )/6 for (u, v)inD.
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 588 JOHN S. LEW, JAMES C. FRAUENTHAL AND NATHAN KEYFITZ

 Thus definition (1.2) and these integrals imply

 1Ta2(u, v)= JJ {uu -x|2?2|U -xl v -yl+ v -yl2} dx dy
 D

 (2.9) = (1 +ir/2)(1 + 2u2 + 2v2)+ 2u2v2 -(u4 + v4)/3 for (u, v) in D.

 The gradient of a I (u, v) has the form

 (2.10) Va (u, v) = (2u/ir)f'(u2)i +(2v/ir)f'(v2)j

 inside the disc D. This gradient has an obvious zero at the origin, but has a positive

 radial component elsehwere in the disc; indeed f'(u 2), f'(v 2) > 0, whence

 (2.11) (ui + vj). Va (u, v) = (2/ir)[U2f'(U2)+ V2f'(V2)] > 0.

 Also the gradient, by the symmetry of relation (2.10), has a precisely radial direction

 either on the coordinate axes or on the bisectors u + v = 0. However, the gradient,
 except on these lines, has an angular component towards the nearest bisector. In
 proving this assertion, we may recall the symmetries (1.4) and impose the restrictions

 O<v<u<1; then

 (2.12) (-vi+ uj) Va a (u, v) = (2uv/7r)[f'(v2)-f'(U2)]

 is positive under these assumptions, since f'(t) is decreasing for 0? t_ 1.
 Thus the function a' (u, v), restricted to any circle u2+v2 = q2, assumes its

 minima on the coordinate axes, and assumes its maxima on the two bisectors.
 Specifically, the minimum value on the disc boundary is

 (2.13) aI(1, 0)=1+-41.42441
 3ir

 while the maximum value on the disc boundary is

 (2.14) a1(1/, i1/ /2)= [1+4 -] V/21.45737.

 Therefore the absolute maximum on the disc is (2.14), whereas the absolute minimum
 on the disc is

 1 8
 (2.15) ai(0, 0)=-z-0.84883.

 3ir

 We now define s and fl by

 (2.16) se(4 + f) = re(q + 9) - qe(k),

 given any ui+ vj = qe(k) and xi+ yj = re(4 + 0) in the disc D. If q and r are constants

 in some calculation then s and qf are determined by 9; indeed

 (2.17) s = q2+ r2 - 2qr cos 9
 by the law of cosines. We introduce the auxiliary function

 (2.18) g(qe((k)) = g(ui + vj) = (I u I + Iv I)/q = Icos Xk + Isin,X 1,

 and evaluate its rotational average

 2 { 2gs

 (2.19) (2 Tr)_1 |g(qe(o)) do = rT-' I sin XI1 dO = 4/X7.
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 AVERAGE DISTANCES IN A CIRCULAR DISC 589

 We can use identity (2.19) to connect two averages (1.7):

 1 27r 27r

 b (q)=r rdr{ d6 (2rT)-1' {dk sg(se(o+fr))

 (2.20) -1Tlfrdr{s(e,r)d6

 no r r sO )d

 =4 2 l(u, v) =-4 2()

 Hence a byproduct of the later result (3.2) is the boundary average of a I (u, v):

 4 2 1 128 (2.21) b'(1)=-bi(1)= 21.44101. 1 7T 97rT

 Smeed and Jeffcoate [17], via (2.20), evaluate (2.21) in the same way, and
 Fairthorne [5], via (2.20), calculates the average over (u, v):

 (2.22) J 1( du dv =512
 (|a (u, v)-= 2-1.15281.

 D

 Also Haight [7] obtains (2.13), but these authors do not treat the remaining possi-

 bilities.

 3. Euclidean distance. We now consider the average of the Euclidean distance:
 we need only calculate b 2(q), by the rotational invariance. We first determine its
 extrema on the disc; our gradient analysis shows that a I (u, v) is strictly increasing in
 all radial directions, whence relation (2.20) shows that b2 (q) is strictly increasing on
 [0, 1]. Geometric intuition might perhaps suggest using polar coordinates about the
 disc center, but angular integration will then produce elliptic integrals of the second
 kind (Fairthorne [5]). Instead we translate the origin to (q, 0) and we take polar
 coordinates (s, fr) about this point). Clearly if q = 0, so that (u, v) is at the disc center,
 then

 2 1r

 (3.1) b 2(0) = a2 (0, 0)= d q s2ds/IT = 2- 0.66667;

 while if q = 1, so that (u, v) is on the disc boundary, then

 3ir/2 -2 cos &(

 b l2 (1) = a 2 (1, 0) =| do |0 52 ds/
 (3.2) 8W/123 32

 Hence (3.1) and (3.2), by these remarks, are the minimum and maximum on the disc.
 If q is an arbitrary number in [0, 1] and (s(fr), f) is an arbitrary point on the disc

 boundary, then the law of cosines asserts

 (3.3) 1 =q2 + s(/)2 +2qs(/) cos f,

 and the proper choice of signs implies

 (3.4) s(qf)=-q cosf+[1-q2 sin f)1/2.
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 590 JOHN S. LEW, JAMES C. FRAUENTHAL AND NATHAN KEYFITZ

 However, odd powers of cos fr have zero mean, whence the required average on the
 disc satisfies

 3rb 2 (q) = 3,7a 2 (q, 0)
 2w s61')

 =3{ d+|j s2ds

 (35) 2

 2i

 = [1 -q2 sin2 i,]1/2[1 + 3q2-_4q2 sin2 (fr df

 22

 = f [1 - q2 sin2 {g,]-1/2[1 + 3q2 - (Sq2 + 3q4) sin2 {fr +4q4 sin4 f] dfr

 However we produce no change in the value of (3.5) when we decrease its integrand

 by the derivative of any 2ir-periodic function, while we observe

 (3.6) ~~(d/dfGr)[1 -q2 sin2 (fr]112 sin (/1 cos fr'
 = [1- q2 sin2 ]-/2[1 -d(2 + 2q2) sin2 fr + 3q2 sin4 f]

 by direct calculation. If we subtract that multiple of (3.6) which eliminates the sin4 fr'
 term in (3.5), then we obtain

 9ira (u, v) = 9rc (q, 0) = 9rb~)2

 (3) = (4q2- 4) {2 [1- q2 sin2 /,]1/2 d[l + (q2 +7) |[1 q2 sin2 ]12 df

 = 16(q2-l)K(q2)+4(q2+ 7)E(q2) for0qT1

 where respectively K(m) and E(m) are complete elliptic integrals of the first and

 second kind (Abramowitz and Stegun [1, ? 17.3]).
 Haight [7] derives (3.2) in the same way, while Witzgall [21] obtains both (3.7)

 and its analogue for external (u, v). An ingenious argument via elementary functions
 (Whitworth [20, Exercise 696], ApSimon [2], Garwood and Tanner [6]) yields the
 additional average over (u, v):

 (3.8) JJ av2(u, v) dudv/== 9 0.90541;
 D

 and the factor 4/ir from (2.20) then provides the corresponding average in (2.22)
 (Fairthorne [5]). Various authors (Deltheil [3, pp. 114-120], Hammersley [8], Watson
 [19], Schweitzer [15], Wyler [23]) calculate higher moments for two random points;
 moreover the first two consider higher dimensions, while the last two generalize the
 external average, and Hammersley [9] cites a biological application of such results.
 We shall not repeat these calculations, but, recalling the integral (2.7), we obtain the
 desired second moment:

 b2 (q) =Ta2 (u, v)2= jj {u- x12 +Iv-y12} dxd

 D

 (3.9) _ 2 /2)q1 242+27 +2v2)= for/2)q1+2q for0?nc
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 AVERAGE DISTANCES IN A CIRCULAR DISC 591

 Some partially numerical results of Karp, McKellar and Wong [12] suggest an

 almost exact proportionality among the averages ap(u, v). Hence, on the disc D, we
 consider the ratio a' (u, v)/a2 (u, v), or equivalently, by (2.20), we study the ratio
 a' (u, v)/b1(q). The rotational minimum, average, and maximum of at(u, v) satisfy
 respectively

 (3.10) lTrai (q, O) = f(q2)+f()
 00

 = 8+ E F(m -3)q2m/[(1 - 2m)T1/2r(m + 1)]
 m=1

 2,rr

 Trb (q)= (21T )-j1 [f(q2 COS2 ?)+f(q2sin2 0) do

 (3.11) =T O1 F(m )q2m j sin2m 2k d<M/[(-2m) r12F(m+1)]

 = - Z F(m -2)q(m si d)q2m/[F(m + 1)21,
 m=O

 ira I (q/li, q/4/) = 2f(q2/2)
 (3.12)

 00

 = 2 2F(m --)q2m/[(1 - 2m)2m7rl/2F(m + 1)],
 m=O

 by (2.4) and (2.6). All three series, for IqI ? 1, are absolutely convergent; the first two
 terms in each expansion are respectively identical; only these terms in each expansion

 are ever positive. Thus, in particular,

 (3.13) Tb (q)= 2q2_.

 and, by monotonicity,

 (3.14) 8, < Tb 1 (q)9 (dldq2 )r;b (q) _- 2.

 Not only do the three preceding functions, by our gradient analysis, take positive

 values in the stated order, but also their consecutive differences, in the same order, are

 power series of positive terms. This follows respectively from the inequalities

 (3.15) 2 F(m +21)< F(f)r(m + 1) < 2m F(m + 1)

 for m = 2, 3,... , which follow immediately by induction from the case m = 1. There-
 fore

 ( r(bI (q)- al (q, 0)] = q4x strictly increasing function,

 7r[a1 (q/v/2, q/v'2)- bl (q)] =q x strictly increasing function.

 However (d/dq) log [q4/b 1 (q)] is strictly positive for 0? q < 1, since

 (3.17) irq(d/dq)bl(q)= 2q2(d/dq2)rb 1 (q) _ 4q2_4 <32 c4ibl(q)

 by (3.14). Hence the differences (3.16), even multiplied by 1/(rbl (q)), remain strictly
 increasing functions on [0, 1], and assume their maxima on the disc boundary.

 However the ratio a 1 (u, v)/b (q) is unity at the origin, whereas

 (3.18) a (1/,O 1/i (1) = 3/T(3 +/T+14)/128 / 0.988489

 (3.19) a1 (1 /.,~9 l/ -)/ b (1) = 3er-(3,rT+ 10)/(128,,/)- 1.01135.
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 592 JOHN S. LEW, JAMES C. FRAUENTHAL AND NATHAN KEYFITZ

 Clearly (3.18) and (3.19), by these arguments, are the minimum and maximum of

 ai1 (u, v)/b (q), whence

 (3.20) al(1, O)/a 2(1, O) = 3(3r +4)/32 z 1.25857,

 (3.21) al (1/li, 1/I4)/b1 (1)= 3(3ir + 10)/(321i) 1.28769,

 by (2.20), are the minimum and maximum of a' (u, v)/a2 (u, v). Thus the ratio is
 indeed very nearly constant.

 Acknowledgment. The authors wish to thank the referee for several suggestions
 which added considerable substance to this discussion.
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